Patterns of mineral lick visitation by Linnaeus's two-toed sloth Choloepus didactylus (Pilosa, Megalonychidae) in eastern Ecuador

Autores/as

  • Diego Mosquera Estación de Biodiversidad Tiputini, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador.
  • Gabriela Vinueza-Hidalgo Estación de Biodiversidad Tiputini, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador.
  • John G. Blake Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, Florida, USA.

DOI:

https://doi.org/10.31687/saremNMS.19.0.07

Resumen

La geofagia involucra consumo de tierra para complementar la dieta y facilitar procesos digestivos. Utilizamos cámaras para documentar el uso de un saladero por perezosos de dos dedos de Linnaeus Choloepus didactylus (Linnaeus, 1758), desde diciembre 2014 a noviembre 2015, en un bosque de tierras bajas ecuatoriano. Obtuvimos 201 videos y analizamos si la lluvia o la fase lunar influyeron en estas visitas. Estas se correlacionaron positivamente con precipitación mensual y negativamente con iluminación lunar, pero las correlaciones no fueron significativas. Consideramos tres hipótesis para visitar saladeros: (a) complementar dieta, (b) ayudar a la digestión y (c) obtener agua.

Citas

Abrahams, P. W., & J. A. Parsons. 1996. Geophagy in the tropics: a literature review. Geographical Journal 162:63–72.

Abrahams, P. W. 1999. The chemistry and mineralogy of three savanna lick soils. Journal of Chemical Ecology 25:2215–2228.

Bass, M. S., et al. 2010. Global conservation significance of Ecuador's Yasuní National Park. PLoS ONE 5:e8767.

Belovsky, G. E., & O. J. Schmitz. 1994. Plant defenses and optimal foraging by mammalian herbivores. Journal of Mammalogy 75:816–832.

Blake, J. G., J. Guerra, D. Mosquera, R. Torres, B. Loiselle, & D. Romo. 2010. Use of mineral licks by whitebellied spider monkeys (Ateles belzebuth) and red howler monkeys (Alouatta seniculus) in eastern Ecuador. International Journal of Primatology 31:471–483.

Blake, J. G., D. Mosquera, J. Guerra, B. A. Loiselle, D. Romo, & K. Swing. 2011. Mineral licks as diversity hotspots in lowland forest of eastern Ecuador. Diversity 3:217–234.

Bowler, M. T., M. W. Tobler, B. A. Endress, M. P. Gilmore, & M. J. Anderson. 2017. Estimating mammalian species richness & occupancy in tropical forest canopies with arboreal camera traps. Remote Sensing in Ecology and Conservation 3:146–157.

Brightsmith, D. J. 2004. Effects of weather on parrot geophagy in Tambopata, Peru. Wilson Bulletin 116:134–145.

Britton, S. W. 1941. Form and function in the sloth. Quarterly Review of Biology 16:13–34.

Chiarello, A. G. 2008. Sloth ecology: an overview of field studies. The biology of the Xenarthra (S. F. Vizcaíno & W. L. Loughry, eds.). University of Florida Press, Gainesville.

Dew, J. L. 2005. Foraging, food choice, and food processing by sympatric ripe-fruit specialists: Lagothrix lagotricha poeppigii and Ateles belzebuth belzebuth. International Journal of Primatology 26:1107–1135.

Diamond, J., K. D. Bishop, & J. D. Gilardi. 1999. Geophagy in New Guinea birds. Ibis 141:181–193.

Emmons, L., & F. Feer. 1997. Neotropical rainforest mammals – a field guide, 2nd edition. University of Chicago Press, Chicago.

Ferrari, S. F., L. M. Veiga, & B. Urbani. 2008. Geophagy in New World monkeys (Platyrrhini): ecological and geographic patterns. Folia Primatologica 79:402–415.

Foley, W. J., W. V. Engelhardt, & P. Charles-Dominique. 1995. The passage of digest, particle size, and in vitro fermentation rate in the three-toed sloth Bradypus tridactylus (Edentata: Bradypodidae). Journal of Zoology 236:681–696.

Gilardi, J. D., S. S. Duffey, C. A. Jun, & L. A. Tell. 1999. Biochemical functions of geophagy in parrots: detoxification of dietary toxins and cytoprotective effects. Journal of Chemical Ecology 25:897–922.

Gilmore, D. P., C. P. Da Costa, & D. P. F. Duarte. 2000. An update on the physiology of two- and three-toed sloths. Brazilian Journal of Medical and Biological Research 33:129–146.

Gilmore, D. P., C. P. Da Costa, & D. P. F. Duarte. 2001. Sloth biology: an update on their physiological ecology, behavior and role as vectors of arthropods and arboviruses. Brazilian Journal of Medical and Biological Research 34:9–25.

Gómez-Hoyos, D. A., J. F. González-Maya, J. Pacheco, R. Seisdedos-Vergara, C. L. Barrio-Amoros, & G. Ceballos. 2017. Mineral-lick use by Choloepus hoffmanni (Pilosa: Megalonychidae) at Las Cruces Biological Station, Coto Brus, Costa Rica. The Southwestern Naturalist 62:278–315.

Howarth, S. T., & J. F. Toole. 1973. Some observations on the circadian rhythm of Choloepus hoffmanni, the two-toed sloth. Laboratory Animal Science 23:377–379.

Izawa, K. 1993. Soil-eating by Alouatta and Ateles. International Journal of Primatology 14:229–242.

Kreulen, D. A. 1985. Lick use by large herbivores: a review of benefits and banes of soil consumption. Mammal Review 15:107–123.

Krishnamani, R., & W. C. Mahaney. 2000. Geophagy among primates: adaptive significance and ecological consequences. Animal Behaviour 59:899–915.

Link, A., N. Galvis, E. Fleming, & A. Di Fiore. 2011. Patterns of miner lick visitation by spider monkeys and howler monkeys in Amazonia: Are licks perceived as risky areas? American Journal of Primatology 73:386–396.

Link, A., A. Di Fiore, N. Galvis, & E. Fleming. 2012. Patterns of mineral lick visitation by lowland tapir (Tapirus terrestris) and lowland paca (Cuniculus paca) in a western Amazonian rainforest in Ecuador. Mastozoología Neotropical 19:63–70.

Lundquist, C. F., & W. W. Varnedoe Jr. 2005. Salt ingestion caves. International Journal of Speleology 35:13–18.

Marlow, R. W., & K. Tollestrup. 1982. Mining and natural exploitation of mineral deposits by the desert tortoise, Gopherus agassizis. Animal Behavior 30:475–478.

Martiínez, N., C. Antelo, & D. Rumiz. 2004. Rehabilitación de perezosos (Bradypus variegatus) urbanos en Reservas Privadas aledañas a Santa Cruz de la Sierra: Una iniciativa multipropósito de investigación, manejo y educación. Revista Boliviana de Ecología y Conservación Ambiental 16:1–10.

Matsubayashi, H., P. Lagam, N. Majalap, J. Tangah, J. R. A. Sukon, & K. Kitayama. 2007. Importance of natural licks for the mammals in Bornean inland tropical rain forests. Ecological Research 22:742–748.

McNab, B. K. 1978. Energetics of arboreal folivores: physiological problems and ecological consequences of feeding on an ubiquitous food supply. The ecology of arboreal folivores (G. G. Montgomery, ed.). Smithsonian Institution Press, Washington.

McNab, B. K. 1985. Energetics, population biology, and distribution of Xenarthrans, living and extinct. The evolution and ecology of armadillos, sloths and vermilinguas. (G. G. Montgomery, ed.). Smithsonian Institution Press, Washington.

Merrit, D. A. 1985. The two-toed sloth, Choloepus hoffmanni. The evolution and ecology of armadillos, sloths and vermilinguas. (G. G. Montgomery, ed.). Smithsonian Institution Press, Washington.

Molina, E., T. E. León, & D. Armenteras. 2014. Characteristics of natural salt licks located in the Colombian Amazon foothills. Environmental Geochemistry and Health 36:117–129.

Mosquera, D., J. G. Blake, D. Romo, & K. Swing. 2016. New observations of living Echimys saturnus (dark tree rat, Echimyidae) from eastern Ecuador. Mastozoología Neotropical 23:87–91.

Peery, M. Z., & J. N. Pauli. 2012. The mating system of a “lazy” mammal, Hoffmann's two-toed sloth. Animal Behaviour 84:555–562.

Plese, T., N. Reyes-Amaya, L. Castro-Vásquez, S. Giraldo, & O. Feliciano. 2016. Distribution and current state of knowledge of Hoffmann's two-toed sloth (Choloepus hoffmanni) in Colombia, with comments on the variations of its external morphological traits. Therya 7:407–421.

Reyes, A., D. Rodríguez, N. Reyes-Amaya, D. Rodríguez-Castro, H. Restrepo, & M. Urquijo. 2017. Comparative efficiency of photographs and videos for individual identification of the Andean bear (Tremarctos ornatus) in camera trapping. Therya 8:83–87.

Sunquist, M. E., & G. G. Montgomery. 1973. Activity patterns and rate of movement of two-toed and three-toed sloths (Choloepus hoffmani and Bradypus tridactylus). Journal of Mammalogy 54:946–954.

Voigt, C. C., K. A. Capps, D. K. N. Dechmann, R. H. Michener, & T. H. Kunz. 2008. Nutrition or detoxification: Why bats visit mineral licks of the Amazonian rainforest. PLoS ONE 3:e2011.

Voirin, B., R. Kays, M. Wikelski, & M. Lowman. 2013. Why do sloths poop on the ground? Treetops at risk: Challenges of global canopy ecology and conservation. (M. Lowman, S Devy, & T. Ganesh, eds.). Springer, New York.

Wilson, M. J. 2003. Clay mineralogical and related characteristics of geophagic materials. Journal of Chemical Ecology 29:1525–1547.

Female Two Fingered Sloth at Cerro Azul, Panama

Descargas

Publicado

15–04–2019

Cómo citar

Mosquera, D., Vinueza-Hidalgo, G., & Blake, J. G. (2019). Patterns of mineral lick visitation by Linnaeus’s two-toed sloth Choloepus didactylus (Pilosa, Megalonychidae) in eastern Ecuador. Notas Sobre Mamíferos Sudamericanos, 1. https://doi.org/10.31687/saremNMS.19.0.07

Número

Sección

Notas